This is a collaborative work with Fluid Interfaces Group and Tangible Media Group, MIT Media Lab.
Abstract:
Printflatables is a design and fabrication system for human- scale, functional and dynamic inflatable objects. We use in- extensible thermoplastic fabric as the raw material with the key principle of introducing folds and thermal sealing. Upon inflation, the sealed object takes the expected three-dimensional shape. The workflow begins with the user specifying an intended 3D model which is decomposed to two-dimensional fabrication geometry. This forms the input for a numerically controlled thermal contact iron that seals layers of thermoplastic fabric. In this paper, we discuss the system design in detail, the pneumatic primitives that this technique enables and merits of being able to make large, functional and dynamic pneumatic artifacts. We demonstrate the design output through multiple objects which could motivate fabrication of inflatable media and pressure-based interfaces.
Publications:
Harpreet Sareen, Udayan Umapathi, Patrick Shin, Yasuaki Kakehi, Jifei Ou, Hiroshi Ishii, and Pattie Maes. 2017. Printflatables: Printing Human-Scale, Functional and Dynamic Inflatable Objects. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (CHI ’17). ACM, New York, NY, USA, 3669-3680. DOI: https://doi.org/10.1145/3025453.3025898
Photos: © Tangible Media Group / MIT Media Lab